
 1

Motion Classification Algorithm Comparison
 David Ralph, University of Portsmouth

—————————— ◆ ——————————

1 INTRODUCTION

Motion and gesture recognition is an active area of re-
search in computer vision, and holds promise for applica-
tions in a number of areas, including human-computer-
interaction, medicine, security, and robotics, as well as
many others. Extensive research has taken place into
means of extracting information from video for the pur-
pose of analysis and training of models to enable accurate
prediction and classification of the actions taking place.

The SIFT (Scale-invariant feature transform) al-
gorithm, published in 2004[1] marked the start of a large
growth in interest in this area, resulting in a large increase
in the number of solutions proposed for this research ar-
ea. Since then many other feature descriptors and de-
scriptor extractors have been published, promising im-
proved sets of output features (allowing for more accu-
rate classifiers) and significant speed improvements. Such
algorithms include SURF (Speeded up robust features)
and FAST (Features from Accelerated Segment Test), both
published in 2006, and BRISK (Binary Robust Invariant
Scalable Keypoints) and ORB (Oriented FAST and Rotat-
ed BRIEF) published in 2011.

Computer vision software libraries and frame-
works, such as OpenCV, commonly include a number of
these algorithms for use in research and software devel-
opment. This project will compare the performance and
accuracy of several combinations of the available algo-
rithms and provide analysis on the possible interactions
from combining descriptor extractors with varying fea-
ture detectors. To evaluate these performance metrics,
machine learning models will be trained using the output
descriptors and tested by classifying human motion in
videos from multiple datasets.

2 APPROACH

The solution consists of five key areas: feature extraction,
motion representation, feature representation, training,
and verification. Several technologies and algorithms ex-
ist which would be suitable for each stage, some of which
are compared in the results section.

OpenCV, the library used to create the program,
exposes common interfaces for descriptor matchers, de-
scriptor extractors, and feature detectors. These interfaces
make it simple to programmatically select one of a collec-
tion of several well-established and state-of-the-art algo-
rithms. A complete list of supported algorithms can be
found in the OpenCV documentation [2][3].

This program uses the common interfaces to
compare the accuracy and performance of various combi-
nations of the supported algorithms under the same op-
erating parameters. The results of these tests make it pos-
sible to analyse the behaviour of these algorithms, and of
the other training methods employed, in situations not
thoroughly covered in existing literature.

The program first reads the input files, and for
each generates an MHI (Motion History Image), and
stores the ground truth classification of the video. MHIs
are an effective method of capturing the movement from
a video in a single image. This is done using image sub-
traction to obtain a silhouette of any regions that move
between frames. This representation of the difference be-
tween frames is an example of a Motion Energy Image
(MEI), one of which is shown in Fig 1.

Fig. 1. A Motion Energy Image of a person jogging

To allow for meaningful representation of a sequence

of movement, an MHI can be built up incrementally from
many MEIs, with the progression of time being preserved
by reducing the intensity of earlier MEIs such that the
greater the intensity, the more recent (later in the video)
the movement. Fig 2 is an example of an MHI.

Fig. 2. A Motion History Image of a person jogging.

2

Once an MHI has been generated, the chosen feature
detector is used to identify keypoints in the image, and
then the descriptor extractor converts them into a feature
representation that can be added to a Bag of Visual
Words (BoW). The BoW is used to generate a histogram
for each image which can be used as a descriptor to train
a statistical or machine learning model. An MHI with
keypoints can be seen in Fig 3.

Fig. 3. A Motion History Image of a person jogging annotated with

keypoints identified using SIFT.

In this project, a Support Vector Machine (SVM) is
used to classify samples. This is trained using the de-
scriptor generated by the BoW. SVMs are highly configu-
rable, and the kernel used can have a significant impact
on the complexity of the decision surface [4]. Other meth-
ods, such as neural networks could also be used to train a
model from the descriptor, which may offer advantages
when handling larger datasets (at the cost of added com-
plexity) [5].

To provide useful metrics for comparison, two ap-
proaches are taken independently in this project to gener-
ate a model and make predictions. The first, referred to
here as the ‘Ideal model’, is an SVM created using all the
input videos. This is then tested against all the videos to
determine the ‘Ideal Accuracy’. While this is not a mean-
ingful test of the model’s generality (as it has already seen
the sample it is predicting), misclassification may still
occur, potentially indicating limitations of the model.

The second approach is using k-fold cross-validation
to meaningfully train and test the model. This works by
randomly assigning data items to folders until each is
equal in size, and then training several models using all
but one of the folders as training data, and the remaining
one for testing. This allows all items in the dataset to be
tested without including them in the training set.

After this process is complete, results are output to the
console and logged in files for analysis. Various data rep-
resentations from throughout the process are also export-
ed to files in the output folder.

The program is set-up in such a way that multiple con-
figurations can be run in sequence (within a single execu-
tion of the program), and that the program will not halt if
a test fails (the test will be aborted, but other tests will
continue to run). These features make it easy to run large
numbers of tests automatically, and mitigate some of the
issues involved in running multiple long tests.

3 RESULTS

Table 1 (in the appendix) shows the results of several
tests run using various feature detectors over the SIFT
and SURF descriptor extractors. All tests were conducted
using the FLANN descriptor matcher. The tests were also
performed using a Brute-Force descriptor matcher, pro-
ducing similar results (although all with somewhat great-
er run-time); the results have been omitted here as the
trends remain the same. The full experiment log can be
found in APPENDIX REF.

All tests used the WEIZMANN dataset [6], a set of 70
videos, each 1 to 5 seconds in length, showing one of 10
simple motions, with 7 videos showing each motion. The
cross-validation split the data into 10 folders, of 7 items
each.

The ‘Ideal Accuracy’ is the percentage accuracy when
an SVM is both trained and then tested with the entire
dataset, showing the upper bound on possible accuracy
for cross-validation, this is explained in more detail in the
Approach section.

‘Total Time’ includes the time to create the MHIs and
BoW, as well as train and then test the ‘Ideal’ SVM, and
perform all steps of the cross-validation.

Some of the confusion matrices produced during these
tests are given analysed in the Analysis of Misclassifica-
tions section below.

3.1 COMPARISON OF FEATURES

It can be seen from the test results that the SURF ex-
tractor is significantly (approximately a factor of four)
faster than the SIFT extractor in corresponding test cases.
Both extractors average around the same level of accuracy
overall, however, the distribution of accuracy values for
SURF is greater, with a range of 18.5% (ideal), 31.4%
(cross-validation) verses 15.7% (ideal), 21.4% (cross-
validation) for SIFT. This may be due to optimisations in
the SURF extractor for keypoints of a particular nature, as
is evidenced by the SURF extractor giving the best per-
formance in combination with the SURF detector, where-
as the SIFT extractor shows less preference.

It is also notable that the time taken for the extractor-
detector combinations of SIFT-SURF and SIFT-ORB is
much greater than in other tests, this may be due to the
nature of the keypoints extracted, as SURF can produce
keypoint of variable (potentially large) size, and ORB,
being a binary detector, will typically produce a larger
number of keypoints. This then requires additional pro-
cessing when extracting descriptors. An apparent possi-
bility is that the SURF extractor is well optimised for this,
whereas SIFT can be seen to give poor performance under
these conditions.

The significantly greater speed of the SURF extractor,
especially when using the SURF detector, would make it
more suitable for use in real-time systems. Another fea-
ture of SURF, not used in these tests, is the ability to disa-
ble the orientation invariance feature of the algorithm,
which results in significant speed improvements [7] in
situations when orientation invariance is not required (for
example static cameras).

 3

3.2 COMPARISON OF DATASETS

The program was additionally tested with another da-
taset. The KTH dataset [8] is a collection of 600 videos, 8
to 60 seconds in length. The videos feature various back-
grounds and often contain some camera movement. The
dataset features 6 classifiable actions, performed four
times each by 25 people. Table 2 (in the appendix) shows
the results of tests on this dataset; the configuration is
otherwise the same as in the previous tests.

Both algorithms tested produced a similar level of ac-
curacy, and SURF remained significantly faster than SIFT
(as in the previous tests). Due to the additional complexi-
ties in this dataset (higher variation in video length, un-
stable camera, etc.), a lower accuracy is to be expected. It
is notable that the Ideal Accuracy is much lower than in
tests with a smaller, less complex dataset; this may be due
to limitations in the representation of the data, meaning
that many items cannot be correctly classified with this
model due to inability to create a sufficient classifier with
this volume of data.

The cross-validation accuracy is comparable to that of
the tests on the WEIZMANN dataset despite the addi-
tional complexities. This is likely the result of the orienta-
tion invariant property of the algorithms used, and the
ability of the model to generalise. The much greater run-
time of these tests demonstrates the desirability of time
efficient algorithms, as even in non-real-time systems, the
time to process a large dataset is considerable.

3.3 ANALYSIS OF MISSCLASSIFICAITONS

Table 3 shows the confusion matrix output from the
test on the WEIZMANN dataset using SURF both as the
extractor and detector. This has been chosen as an exam-
ple as it features the greatest accuracy, making outliers
more noticeable. A text file containing a full log of all the
confusion matrices produced should be supplied with
this docuemnt.

Predicted

Actual

2 0 0 2 0 0 0 0 0 0

0 3 0 0 0 0 0 0 0 6

 1 2 4 2 0 0 0 0 0 0

3 0 1 0 0 0 0 0 0 3

0 0 0 0 7 0 0 0 0 0

0 0 0 0 0 3 2 0 0 0

0 0 0 0 0 2 4 0 0 0

0 0 0 0 0 0 0 8 0 0

0 0 0 0 3 0 0 0 7 0

0 2 0 1 0 0 0 0 0 2
Table 4. Cross-validation results from the WEIZMANN dataset using

SURF.

Some classification classes were recognised much more
consistently than others, with the fourth class no having
any successful classifications. The motion described by

this class, is a person skipping sideways while facing the
camera. It is most consistently misclassified as classes 1
and 10, sideways walking and sideways hopping respec-
tively. These actions a relatively similar in terms of
movement within the frame, which is likely the cause of
the misclassification. Other items in the dataset, such as
class 8, which is star-jumps and the most accurately pre-
dicted, are much more distinct in terms of range of mo-
tion, making them easier to classify.

Table 4 shows the same test (SURF-SURF) on the KTH
dataset.

Predicted

Actual

23 40 18 4 9 4

24 55 5 2 5 4

28 26 27 7 8 1

2 1 8 29 24 42

16 2 11 10 32 22

5 2 3 19 5 67
Table 4. Cross-validation results from the KTH dataset using SURF.

In this test, the most misclassified action is class 1, box-
ing, whereas the most successful by a large margin is
class 6, walking. It is notable that in this dataset, walking
is not in any particular direction, with actors moving
from any edge of the camera to the other. This gives a
much greater variety descriptors for comparison, which
may help make it more distinct during training compared
to actions where the actor is in a fixed position such as
boxing, which is most frequently misclassified as clap-
ping (class 2), where this is also the case.

4 CONCLUSION

The program provides a convenient means of testing

a large number of descriptor-detector combinations,

works with multiple datasets, and is robust in execu-

tion (able to continue after failed tests). While the clas-

sification method does not produce good accuracy in

most cases, an struggles particularly with large da-

tasets, it is sufficient to allow comparison of the feature

identification processes supported by the OpenCV

common interface.

A further extension of this project would be to im-

plement a classifier using deep neural networks, or

another appropriate means of learning, to construct

better models for comparison, with greater accuracy.

The limitations of the SVM classifiers produced by the

current program may limit the accuracy of predictions

even with a good set of feature descriptors.

Further tests could include comparison of non-rotation

invariant algorithms to measurably demonstrate the

trade-off between runtime and accuracy over different

datasets. Modification of other parameters to the detec-

tion, description, or training algorithms could also

4

yield interesting results showing the relationships of

these components and the effects on the data output

from each stage.

REFERENCES

[1] D. Lowe, "Distinctive Image Features from Scale-Invariant

Keypoints", International Journal of Computer Vision, vol. 60,

no. 2, pp. 91-110, 2004.

[2] "Common Interfaces of Descriptor Extractors — OpenCV

2.4.13.2 documentation", Docs.opencv.org, 2017. [Online].

Available:

http://docs.opencv.org/2.4/modules/features2d/doc/commo

n_interfaces_of_descriptor_extractors.html#descriptorextractor-

create. [Accessed: 22- Apr- 2017].

[3] "Common Interfaces of Feature Detectors — OpenCV 2.4.13.2

documentation", Docs.opencv.org, 2017. [Online]. Available:

http://docs.opencv.org/2.4/modules/features2d/doc/commo

n_interfaces_of_feature_detectors.html#featuredetector-create.

[Accessed: 22- Apr- 2017].

[4] "RBF SVM parameters — scikit-learn 0.18.1 documentation",

Scikit-learn.org, 2017. [Online]. Available: http://scikit-

learn.org/stable/auto_examples/svm/plot_rbf_parameters.ht

ml. [Accessed: 22- Apr- 2017].

[5] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei, “Large-scale video classification with convolu-

tional neural networks,” in The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2014.

[6] "Actions as Space-Time Shapes", Wisdom.weizmann.ac.il, 2017.

[Online]. Available:

http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActio

ns.html. [Accessed: 28- Apr- 2017].

[7] “Feature Detection and Description — OpenCV 2.4.13.2 docu-

mentation", Docs.opencv.org, 2017. [Online]. Available:

http://docs.opencv.org/2.4/modules/nonfree/doc/feature_d

etection.html#int upright. [Accessed: 22- Apr- 2017].

[8] “Recognition of human actions", Nada.kth.se, 2017. [Online].

Available: http://www.nada.kth.se/cvap/actions/. [Accessed:

20- Apr- 2017].

 5

Descriptor
Extractor

Feature
Detector

Ideal Ac-
curacy (%)

Cross-
Validation

Accuracy (%)

Total Misclassifi-
cations (out of 70)

MHI Gen-
eration

Time (ms)

Total
Time
(ms)

SIFT SIFT 81.4 41.4 41 8,314 17,220

SIFT SURF 72.9 32.9 47 28,683 67,982

SIFT ORB 81.4 44.3 39 43,465 90,771

SIFT BRISK 84.3 47.1 37 4,764 13,658

SIFT FAST 88.6 54.3 32 4,696 13,181

SURF SIFT 81.4 40.0 42 4,053 9,188

SURF SURF 91.4 57.1 30 2,622 8,776

SURF ORB 80.0 54.3 32 4,743 14,879

SURF BRISK 72.9 28.6 50 1,315 6,321

SURF FAST 77.1 25.7 52 1,084 5,786

Table 1. A table of results from the WEIZMANN dataset.

Descriptor
Extractor

Feature
Detector

Ideal Ac-
curacy (%)

Cross-
Validation

Accuracy (%)

Total Misclassifi-
cations (out of

699*)

MHI Gen-
eration

Time (ms)

Total
Time
(ms)

SIFT SIFT 47.2 41.6 350 195,621 304,508

SIFT SURF 48.1 48.7 307 380,221 582,172

SIFT BRISK 53.4 51.1 293 139,180 238,559

SIFT FAST 50.3 49.9 300 239,001 375,891

SURF SIFT 36.2 33.6 398 77,500 170,501

SURF SURF 42.6 40.4 357 68,094 164,678

SURF BRISK 42.9 38.2 370 59,953 151,216

SURF FAST 34.7 34.6 392 62,688 168,774

Table 2. A table of results from the KTH dataset. One video file in

the collection contained encoding errors and had to be excluded.

